At the start of the course we reviewed deterministic choice and at the end we covered Dekel's betweenness. These are not contained in this summary.

Mixture Spaces

- The primitives are an arbitrary set P and an operation h : $[0,1] \times P \times P \rightarrow P$, we will write $h_{a}(p, q)$ instead of $h(a, p, q)$
- $\langle P, h\rangle$ is a mixture space if the following axioms hold:

M1 $h_{1}(p, q)=p$ (sure mix)
M2 $h_{a}(p, q)=h_{1-a}(q, p)$ (commutativity)
$\boxed{M 3} h_{a}\left(h_{b}(p, q), q\right)=h_{a b}(p, q)$ (one-sided distributivity)
■ M1, M2, M3 $\Rightarrow \mathbf{M} 4: h_{c}\left(h_{a}(p, q), h_{b}(p, q)\right)=h_{c a+(1-c) b}(p, q)$ (two-sided distributivity)

$$
\mathbf{M 1}, \mathbf{M} 2, \mathbf{M} 3 \Rightarrow \mathbf{M} 0: h_{a}(p, p)=p(\text { trivial mix })
$$

- Careful! The following properties are true in lottery spaces, but not true in general mixture spaces:
- $h_{a}\left(h_{b}(p, q), r\right)=h_{a b}\left(p, h_{\frac{a(1-b)}{1-a b}}(q, r)\right)$ (associativity)
- $h_{a}(p, r)=h_{a}(q, r) \Rightarrow p=q$ (determinicity)
- A binary relation \succeq on P satisfies the von NeumannMorgenstern (vNM) axioms if:

A1 \succeq is a preference relation (complete and transitive)
$\overline{\text { A2 }} p \succ q, a \in(0,1) \Rightarrow h_{a}(p, r) \succ h_{a}(q, r)$
A3 $p \succ q \succ r \Rightarrow \exists a, b \in(0,1): h_{a}(p, r) \succ q \succ h_{b}(p, r)$
■ Given A1 and A2, the following is equivalent to A3 if the set P is a topological space:

A3* For every $p \in P$, the sets $\{q: p \succeq q\},\{q: q \succeq q\}$ are closed
Theorem (Mixture Space Theorem, Herstein-Milnor 1953). Let $\langle P, h\rangle$ be a mixture space and \succeq binary relation on P. Then:
\succeq satisfies A1, A2, A3 iff \succeq has a linear representation.
The representation is unique up to an affine transformation, i.e., if $U: P \rightarrow \mathbb{R}$ is a linear function that represents \succeq and V is some other function that represents \succeq then $V=a U+b$, for $a>0, b \in \mathbb{R}$.
U is linear if $U\left(h_{a}(p, q)\right)=a U(p)+(1-a) U(q)$
■ Before proving the theorem, we showed two lemmas
Lemma 4.1. If \succeq satisfies $A 1, A 2, A 3$ then:

1. $1 \geq a>b \geq 0, p \succ r \Rightarrow h_{a}(p, r) \succ h_{b}(p, r)$
2. $a \in(0,1), p \sim q \Rightarrow h_{a}(p, q) \sim q$; if $p \succ q$ then $p \succ h_{a}(p, q) \succ q$
3. $p \succeq q, r \succeq s \Rightarrow h_{a}(p, r) \succeq h_{b}(q, s)$ strict if strict.

Lemma 4.2. Let $\alpha(p, q, r):=\sup \left\{a \in[0,1]: q \succ h_{a}(p, r)\right\}$. For any p, q, r such that $p \succ q \succ r, h_{\alpha(p, q, r)}(p, r) \sim q$.

Note that if $p \sim q$ for all $p, q \in P$ then we can set $U(p)=1$ for all p and we are done

- Thus assume $\bar{p} \succ \underline{p}$ for some $\bar{p}, \underline{p} \in P$ and for any $r \in P$ define:

$$
U(r)=\left\{\begin{array}{cl}
\frac{1}{\alpha(r, \bar{p}, \underline{p})} & \text { if } r \succ \bar{p} \\
1 & \text { if } r \sim \bar{p} \\
\alpha(\bar{p}, r, \underline{p}) & \text { if } \bar{p} \succ r \succ \underline{p} \\
0 & \text { if } r \sim \underline{p} \\
\frac{-\alpha(\bar{p}, \underline{p}, r)}{1-\alpha(\bar{p}, \underline{p}, r)} & \text { if } \underline{p} \succ r
\end{array}\right.
$$

- Consider each case in turn to show that U represents \succeq

To show that U is linear, we again consider the various cases

- Assume $\bar{p} \succ p \succ \underline{p}, \bar{p} \succ q \succ \underline{p}$ (case 3 for both)
- Note that $h_{U(p)}(\bar{p}, \underline{p}) \sim p$, and $h_{U(q)}(\bar{p}, \underline{p}) \sim q$, by 4.2 and construction of U
- By 4.1(iii) and the above (as well as M4):

$$
\begin{aligned}
h_{a}(p, q) & \sim h_{a}\left(h_{U(p)}(\bar{p}, \underline{p}), h_{U(q)}(\bar{p}, \underline{p})\right) \\
& =h_{a U(p)+(1-a) U(q)}(\bar{p}, \underline{p})
\end{aligned}
$$

- Thus $U\left(h_{a}(p, q)\right)=a U(p)+(1-a) U(q)$
- That \succeq is cts and U represents \succeq does not imply that U is cts
- If in addition to the above U is also linear, then U must also be continous
- The representation is unique in the followin sense

Theorem. If U is a linear function that represents \succeq and $V \neq U$ is linear, then V represents \succeq iff $\exists a>0, b \in \mathbb{R}$ such that $V=a U+b$.

von Neumann-Morgenstern

- Let X be a finite set of prizes, $\mathcal{L}(X)$ be lotteries over X
- An expected utility representation is a utility function U which represents \succeq over $\mathcal{L}(X)$, such that there exists some $u: X \rightarrow \mathbb{R}$ such that $\bar{U}(p)=\sum_{x \in X} u(x) p(x)$ for any $p \in \mathcal{L}(X)$

Theorem (von Neumann-Morgenstern 1947). \succeq on $\mathcal{L}(X)$ satisfies A1, A2, A3 iff it has an expected utility representation.

- Proof is a consequence of the mixture space theorem and the following lemma

Lemma. If U is a linear function on $\mathcal{L}(X)$, then there exists some $u: X \rightarrow \mathbb{R}$ such that $U(p)=\sum_{x} u(x) p(x)$ for all $p \in \mathcal{L}(X)$. Conversely, if $U(p)=\sum_{x} u(x) p(x)$ for all $p \in \mathcal{L}(X)$, then U is linear.

- Proof of lemma is by induction on the number of prizes

von Neumann-Morgenstern on Monetary Prizes

■ X infinite set of prizes, $X=[w, b] \subset \mathbb{R}, w<b$

- Let \mathbf{F} be the set of CDFs on X
- The axioms are slightly adjusted, as follows:
$\mathrm{A} 1+\mathrm{M} \succeq$ is a preference relation and satisfies monotonicity, i.e., $x>y$ implies $\delta_{x} \succ \delta_{y}$
A2 $p \succ q, a \in(0,1) \Rightarrow h_{a}(p, r) \succ h_{a}(q, r)$

A3* For every $F \in \mathbf{F}$, the sets $\{G: G \succeq F\}$ and $\{G: F \succeq G\}$ are closed under the topology induced by the metric $d(F, G)=\int|F-G| d x$

- A3* implies we are endowing \mathbf{F} with the weak topology
- $\mathrm{A} 3^{*}$ can be replaced by other notions of weak convergence
- e.g., if $F^{n} \rightarrow F$ at every continuity point of F and $F^{n} \succeq G$ for all n, then $F \succeq G$

Theorem. \succeq on \mathbf{F} satisfies $\mathbf{A 1 + M , ~ A 2 , ~ A 3 ~}{ }^{*}$ iff there is a continuous, strictly increasing $u: X \rightarrow \mathbb{R}$, such that:

$$
U(F)=\int u(x) \mathrm{d} F(x) \quad \text { represents } \succeq
$$

■ F second order stochastically dominates G if $F \neq G$ and $\int_{-\infty}^{z} G(x) \mathrm{d} x \geq \int_{-\infty}^{z} F(x) \mathrm{d} x$ for all z

■ \succeq is risk averse when $F \succ G$, if F second order dominates G
Theorem (Notions of Risk Aversion). Let \succeq on \mathbf{F} satisfy $\mathbf{A 1}+\mathbf{M}$, A2, $\mathbf{A 3}^{*}$ and u be the $v N M$ utility index. Then:
\succeq risk averse $\Leftrightarrow u$ strictly concave $\Leftrightarrow \delta_{\frac{1}{2} x+\frac{1}{2} y} \succ \frac{1}{2} \delta_{x}+\frac{1}{2} \delta_{y}$.

Anscombe-Aumann

- Let $S=\{1, \ldots, n\}$ be a finite set of states, X be a set of prizes
- Let H be a set of acts $f: S \rightarrow \mathcal{L}(X)$
- We have the following AA axioms:

AA1-AA3 These are just A1-A3 for \succeq on H
AA4 $x \succ y$ for some $x, y \in X$ (non degenerate preference)
AA5 For every f, g, \hat{f}, \hat{g}, such that there are non-null $i, j \in S$ so that $f_{k}=g_{k}$ for all $k \neq i, \hat{f}_{k}=\hat{g}_{k}$ for all $k \neq j$ and $f_{i}=\hat{f}_{j}$, $g_{i}=\hat{g}_{j}$, we have $f \succeq g$ implies $\hat{f} \succeq \hat{g}$ (state separability)

■ A state $i \in S$ is null if for all f, g such that $f_{j} \equiv g_{j}$, for $j \neq i$ we have $f \sim g$

- Note that AA5 implies state-separable preferences

Theorem (Anscombe-Aumann 1963). \succeq satisfies AA1 - AA5 on H iff there exists a non-constant linear U on $\mathcal{L}(X)$, and a probability μ on S such that:

$$
W(f):=\sum_{s \in S} U\left(f_{s}\right) \mu(s)
$$

represents $\succeq . U$ is unique up to a positive affine transformation.
The key part of the proof is the lemma below
Lemma. Function $W: H \rightarrow \mathbb{R}$ is linear iff $\exists\left\{U_{s}\right\}_{s \in S}$, such that $W(f)=\sum_{s \in S} U_{s}\left(f_{s}\right)$.

The rest of the proof proceeds as follows:

- Using AA5 show that all U_{s} from the lemma represent the same preferences up to positive affine transformation
- By AA4 there is one non-null state $i \in S$
- Let the positive affine transformations taking utility from state j to state i be $a_{j}>0, b_{j}$
- Define $\mu(j)=a_{j}$ and normalize to sum to 1
- We extended this to arbitrary S, but restricting to H^{0}, the set of simple acts, i.e., acts which yield finite number of prizes
- In this case we needed a slightly stronger axiom AA5:

AA5* $f, g \in H^{0}$, and $p, q \in \mathcal{L}(X)$, and non-null events E, \hat{E}, such that: $f_{s}=g_{s}$ for $s \notin E, \hat{f}_{s}=\hat{g}_{s}$ for $s \notin \hat{E}$, and $f_{s}=\hat{f}_{\widehat{s}}=p, g_{s}=\hat{g}_{\widehat{s}}=q$ for all $s \in E, \widehat{s} \in \hat{E}$ we have $f \succeq g$ implies $\hat{f} \succeq \hat{g}$

Event $E \subset S$ is null if $f_{s}=g_{s}, \forall s \in S \backslash E$ implies $f \sim g$

Qualitative Probability

We began by looking at some facts from probability theory
Fact 1. A finitely-additive probability μ on A, an algebra on S, can be extended to 2^{S}.

Fact 2. $A \sigma$-additive probability μ on A, an algebra on S, can be extended to $\sigma(\mathcal{A})$.

- A probability μ on an algebra \mathcal{A} is convex-valued if $\forall A \in \mathcal{A}$, $r \in[0,1]$, there is $B \subset A$ such that $\mu(B)=r \mu(A)$
- A probability μ on an algebra \mathcal{A} is non-atomic if $\forall \mu(A)>0$, there is $B \subset A$ such that $0<\mu(B)<\mu(A)$

Theorem. Convex-valued $\mu \Rightarrow$ non-atomic μ. The converse is true for σ-additive μ.

- Preference \succeq^{*} over \mathcal{A} is a qualitative probability if:

Q1 \succeq^{*} is complete and transitive
Q2 $A \succeq^{*} \varnothing$, for all A
Q3 $S \succ^{*} \varnothing$
Q4 $A \succeq^{*} B$ iff $A \cup C \succeq^{*} B \cup C$, when $A \cap C=B \cap C=\emptyset$

- Further, there was an important axioms regarding partitions
$\mathbf{P} A \succ^{*} B$ implies $\exists\left\{A_{1}, \ldots, A_{n}\right\}$, a partition of S, such that $A \succ^{*}\left(B \cup A_{i}\right)$ for every A_{i}
- Says that not too many things are different from each other"
- Kreps book shows that a qualitative probability, \succeq^{*}, satisfies \mathbf{P} iff it is both fine and tight:
- \succeq^{*} is fine if for all $A \succ^{*} \varnothing$, there is a finite partition of S no member of which is as likely as A
- \succeq^{*} is tight, if for all $A \succ^{*} B$, there is C such that $A \succ^{*}$ $(B \cup C) \succ^{*} B$

Below are some examples of the above theorem

- Let $S=[0,1] \cup[2,3]=S_{1} \cup S_{2}$ and write $A=A_{1} \cup A_{2}$ (where $A_{1} \subseteq S_{1}, A_{2} \subseteq S_{2}$)

Example (Lexicographic). $A \succ^{*} B$ iff $\left|A_{1}\right|>\left|B_{1}\right|$ or if $\left|A_{1}\right|=\left|B_{1}\right|$ and $\left|A_{2}\right|>\left|B_{2}\right|$

- Fineness fails: For $A=[2,2.5]$, we have $A \succ^{*} \varnothing$, by every finite partition includes an element with a positive mass on S_{1}

Example (Substitutes). $A \succ^{*} B$ iff $\left|A_{1}\right|+\left|A_{2}\right|>\left|B_{1}\right|+\left|B_{2}\right|$, or if $\left|A_{1}\right|+\left|A_{2}\right|=\left|B_{1}\right|+\left|B_{2}\right|$ and $\left|A_{1}\right|>\left|B_{1}\right|$

Tightness fails: For $A=[0,0.5], B=[2,2.5]$, we have $A \succ^{*} B$, but nothing can be added to B that will not make it strictly more likely than A

Theorem. Let \succeq^{*} satisfy $\mathbf{Q 1}-\mathbf{Q 4}$ and \mathbf{P}. Then $\exists \mu$ a finitelyadditive prob. that represents $\succeq^{*} ; \mu$ is unique and convex valued.

Fact*. Every \succeq^{*} satisfying $\mathbf{Q 1}-\mathbf{Q 4}$ and \mathbf{P} has an 2^{n} equipartition (for every n), and for $A \succ^{*} B$, there is $C \subset A$ such that $C \sim^{*} B$.

- The proof of the theorem uses this fact and a few lemmas

Lemma 0. Assume $A \cap B=\emptyset=C \cap D$. If $A \succeq^{*} C$ and $B \succeq^{*} D$, then $A \cup B \succeq^{*} C \cup D$. Further $A \succ^{*} C$ and $B \succ^{*} D$ implies $A \cup B \succ^{*} C \cup \bar{D}$.

Lemma 1. Let $a=\left\{A_{1}, \ldots, A_{n}\right\}, b=\left\{B_{1}, \ldots, B_{m}\right\}$ be two equipartitions of S. Then (i) $n=m$ implies $A_{i} \sim^{*} B_{j}$ for all i, j (ii) $n>m$ implies $A_{i} \succ^{*} B_{j}$ for all i, j (iii) $n=2 m$ implies $A_{i} \sim^{*} B_{j} \cup B_{k}$.
\square Define $k(n, a, A)=\min \left\{k: \cup_{i=1}^{k} A_{i} \succeq^{*} A\right\}$, for some $a=$ $\left\{A_{i}\right\}_{i=1}^{2^{n}}$

- Further define $k(n, A)=\min _{a \in \mathbf{a}^{2 n}} k(n, a, A)$
- By lemma $1, k(n, A)=k(n, a, A)$

Finally define $\mu(A)=\lim _{n} \frac{k(n, A)}{2^{n}}$
Lemma 2. $\mu(A)$ is a finitely-additive probability.

- The final step is to show μ represents \succeq^{*} and is unique and convex valued

Savage

Let S be an artbitrary set of states, X the set of prizes

- An act $f: S \rightarrow X$ is simple if it takes a finite number of prizes
- Let \succeq be a relation on F, the set of all simple acts
- For any $x \in X$, let $x \in F$ be the act always returning prize x
- Let $f A g$ denote the act which is the same as f on states $A \subset S$ and the same as g on $S \backslash A$
- The Savage axioms are:

S1 \succeq is a preference relation
5 S2 There is some $x, y \in X, F$ such that $x \succ y$ (nondegeneracy)
S3 $f A h \succeq g A h$ implies $f A h^{\prime} \succeq g A h^{\prime}$ (sure-thing principle)
S4 If A is non-null, then $x A h \succeq y A h \forall h$ iff $x \succeq y$ (Kreps sure-thing principle)
5 S5 $x A y \succeq x B y$ implies $x^{\prime} A y^{\prime} \succeq x^{\prime} B y^{\prime}$, for all $x \succ y, x^{\prime} \succ y^{\prime}$ (states are independent of prizes)
5 S6 For all $f \succ g, x \in X$ there is a finite partition of S such that $x A f \succ g$, and $f \succ x A g$ (strong continuity)

- Some useful observations
- For $\mathbf{S 6}$ to be satisfied S must be infinite
- For $\mathbf{S 5}$ to be violated we need at least 3 prizes
- The existence of an additive representation implies S3
- The strict version of $\mathbf{S 4}$ is for all non-null $A: x \succ y$ iff $\exists h . x A h \succ y A h$
- The "for all h " is important for constructing counterexamples of $\mathbf{S 4}$
- In the absence of completeness, zero measure sets might not be null, as by definition, A is null if for all f, g, h : $f A h \sim g A h$, but the latter may not be comparable

Theorem (Savage 1954). A binary relation \succeq on the set of simple savage acts satisfies S1-S6 iff there exists \bar{a} non-constant function u on X, and a finitely-additive probability on $\left(S, 2^{S}\right)$, such that $W(f)=\sum_{x \in X} u(x) \mu\left(f^{-1}(x)\right)$ represents \succeq. Furthermore, μ is unique and u is unique up to an affine transformation.

- Steps of the proof:

- Pick any $x \succ y$ and define \succeq^{*} by $A \succeq^{*} B$ iff $x A y \succeq^{*} x B y$.
- \succeq^{*} is a qualitative probability that satisfies Axiom P, hence there exists a uniqe convex valued finitely-additive probability μ that represents \succeq^{*}
- For $f \in F$, define p_{f} by $p_{f}(x)=\mu\left(f^{-1}(x)\right)$, i.e. folddown (simple) acts to (simple) lotteries
- Show that $\phi: F \rightarrow \mathcal{L}^{0}(X)$, defined by $\phi(f)=p_{f}$ is onto, i.e. every (simple) lottery $p \in \mathcal{L}^{0}(X)$ has an act that "reduces" to it
- $p_{f}=p_{g}$ implies $f \sim g$
- Define \succeq^{0} on $\mathcal{L}^{0}(X)$ by $p \succeq^{0} q$ iff there are f, g such that $f_{p}=p, g_{p}=q$, and $f \succeq g$
- \succeq^{0} satisfies (vNM) A1-A3 and therefore there exists a function $u: X \rightarrow \mathbb{R}$ that represents \succeq^{0} on $\mathcal{L}^{0}(X)$
- Combined together, u, μ yield the desired representation: $W(f)=\sum_{x \in X} u(x) \mu\left(f^{-1}(x)\right)$

Comments about Finiteness Assumptions

- Throughout this course we worked with finite primitive sets, with occasional excursions into the infinite, in particular:
- vNM: X is a finite set of prizes
- vNM over monetary prizes: here we considered infinite X, but with the natural order structure, allowing us to approximate elements in $\mathcal{L}(X)$ by simple lotteries, using an added monotonicity requirement
- A-A: S is finite and in the homework we extended the result to infinite S but restricted to simple acts, i.e. acts that give a finite number of outcomes (lotteries in $\mathcal{L}(X)$ in this case)
- Savage: S is infinite (required for \mathbf{P} to hold), but we restrict attention to simple savage acts

