Classic Decision Theory

Faruk Gul's ECO511 Lectures summary b

At the start of the course we reviewed deterministic choice and at the end we covered Dekel's betweenness. These are not contained in this summary.

Mixture Spaces

- The primitives are an arbitrary set P and an operation h: [0,1] × P × P → P, we will write $h_a(p,q)$ instead of h(a, p, q)
- \blacksquare $\langle P, h \rangle$ is a **mixture space** if the following axioms hold:
 - **M1** $h_1(p,q) = p$ (sure mix)
 - **M2** $h_a(p,q) = h_{1-a}(q,p)$ (commutativity)
 - **M3** $h_a(h_b(p,q),q) = h_{ab}(p,q)$ (one-sided distributivity)
- M1, M2, M3 \Rightarrow M4: $h_c(h_a(p,q), h_b(p,q)) = h_{ca+(1-c)b}(p,q)$ (two-sided distributivity)
- **M1**, M2, M3 \Rightarrow M0: $h_a(p,p) = p$ (trivial mix)
- Careful! The following properties are true in lottery spaces, but **not true** in general mixture spaces:

•
$$h_a\left(h_b\left(p,q\right),r\right) = h_{ab}\left(p,h_{\frac{a(1-b)}{1-a}}\left(q,r\right)\right)$$
 (associativity)

- $h_a(p,r) = h_a(q,r) \Rightarrow p = q$ (determinicity)
- A binary relation \succeq on *P* satisfies the von Neumann– Morgenstern (vNM) axioms if:

A1
$$\succeq$$
 is a preference relation (complete and transitive)

A2 $p \succ q, a \in (0, 1) \Rightarrow h_a(p, r) \succ h_a(q, r)$ **A3** $p \succ q \succ r \Rightarrow \exists a, b \in (0, 1) : h_a(p, r) \succ q \succ h_b(p, r)$

■ Given A1 and A2, the following is equivalent to A3 if the set *P* is a topological space:

A3* For every $p \in P$, the sets $\{q : p \succeq q\}, \{q : q \succeq q\}$ are closed

Theorem (Mixture Space Theorem, Herstein-Milnor 1953). Let $\langle P, h \rangle$ be a mixture space and \succeq binary relation on P. Then:

 \succeq satisfies A1, A2, A3 iff \succeq has a linear representation.

The representation is unique up to an affine transformation, i.e., if $U: P \to \mathbb{R}$ is a linear function that represents \succeq and V is some other function that represents \succeq then V = aU + b, for a > 0, $b \in \mathbb{R}$.

- $\blacksquare U \text{ is linear if } U(h_a(p,q)) = aU(p) + (1-a)U(q)$
- Before proving the theorem, we showed two lemmas

Lemma 4.1. If \succeq satisfies A1, A2, A3 then:

1.
$$1 \ge a > b \ge 0$$
, $p \succ r \Rightarrow h_a(p, r) \succ h_b(p, r)$

2.
$$a \in (0,1), p \sim q \Rightarrow h_a(p,q) \sim q; if p \succ q then p \succ h_a(p,q) \succ q$$

3. $p \succeq q, r \succeq s \Rightarrow h_a(p, r) \succeq h_b(q, s)$ strict if strict.

Lemma 4.2. Let $\alpha(p,q,r) := \sup \{a \in [0,1] : q \succ h_a(p,r)\}$. For any p,q,r such that $p \succ q \succ r$, $h_{\alpha(p,q,r)}(p,r) \sim q$.

■ We proved the theorem by construction

- Note that if $p \sim q$ for all $p, q \in P$ then we can set U(p) = 1 for all p and we are done
- **Thus assume** $\overline{p} \succ p$ for some $\overline{p}, p \in P$ and for any $r \in P$ define:

$$U(r) = \begin{cases} \frac{1}{\alpha(r,\overline{p},\underline{p})} & \text{if } r \succ \overline{p} \\ 1 & \text{if } r \sim \overline{p} \\ \alpha(\overline{p},r,\underline{p}) & \text{if } \overline{p} \succ r \succ \underline{p} \\ 0 & \text{if } r \sim \underline{p} \\ \frac{-\alpha(\overline{p},\underline{p},r)}{1-\alpha(\overline{p},\underline{p},r)} & \text{if } \underline{p} \succ r \end{cases}$$

- Consider each case in turn to show that U represents \succeq
- \blacksquare To show that U is linear, we again consider the various cases
 - Assume $\overline{p} \succ p \succ p, \overline{p} \succ q \succ p$ (case 3 for both)
 - Note that $h_{U(p)}(\overline{p},\underline{p}) \sim p$, and $h_{U(q)}(\overline{p},\underline{p}) \sim q$, by 4.2 and construction of U
 - By 4.1(iii) and the above (as well as M4):

$$\begin{array}{ll} h_a\left(p,q\right) & \sim & h_a\left(h_{U\left(p\right)}\left(\overline{p},\underline{p}\right),h_{U\left(q\right)}\left(\overline{p},\underline{p}\right)\right) \\ & = & h_{aU\left(p\right)+\left(1-a\right)U\left(q\right)}\left(\overline{p},\underline{p}\right), \end{array}$$

- Thus $U(h_a(p,q)) = aU(p) + (1-a)U(q)$
- That \succeq is cts and U represents \succeq does not imply that U is cts
 - If in addition to the above U is also linear, then U must also be continous
- The representation is unique in the followin sense

Theorem. If U is a linear function that represents \succeq and $V \neq U$ is linear, then V represents \succeq iff $\exists a > 0, b \in \mathbb{R}$ such that V = aU + b.

von Neumann-Morgenstern

- \blacksquare Let X be a *finite* set of prizes, $\mathcal{L}(X)$ be lotteries over X
- An expected utility representation is a utility function U which represents \succeq over $\mathcal{L}(X)$, such that there exists some $u: X \to \mathbb{R}$ such that $U(p) = \sum_{x \in X} u(x) p(x)$ for any $p \in \mathcal{L}(X)$

Theorem (von Neumann-Morgenstern 1947). \succeq on $\mathcal{L}(X)$ satisfies A1, A2, A3 iff it has an expected utility representation.

■ Proof is a consequence of the mixture space theorem and the following lemma

Lemma. If U is a linear function on $\mathcal{L}(X)$, then there exists some $u: X \to \mathbb{R}$ such that $U(p) = \sum_{x} u(x) p(x)$ for all $p \in \mathcal{L}(X)$. Conversely, if $U(p) = \sum_{x} u(x) p(x)$ for all $p \in \mathcal{L}(X)$, then U is linear.

• Proof of lemma is by induction on the number of prizes

von Neumann-Morgenstern on Monetary Prizes

- $\blacksquare X infinite set of prizes, X = [w, b] \subset \mathbb{R}, w < b$
- $\blacksquare Let$ **F**be the set of CDFs on X
- The axioms are slightly adjusted, as follows:

 $\begin{array}{||c|c|} \hline \mathbf{A1+M} &\succeq \text{ is a preference relation and satisfies monotonicity, i.e.,} \\ \hline x > y \text{ implies } \delta_x \succ \delta_y \end{array}$

A2
$$p \succ q, a \in (0, 1) \Rightarrow h_a(p, r) \succ h_a(q, r)$$

- **A3*** For every $F \in \mathbf{F}$, the sets $\{G : G \succeq F\}$ and $\{G : F \succeq G\}$ are closed under the topology induced by the metric $d(F,G) = \int |F G| dx$
- \blacksquare A3* implies we are endowing **F** with the weak topology
 - A3* can be replaced by other notions of weak convergence
 - e.g., if $F^n \to F$ at every continuity point of F and $F^n \succeq G$ for all n, then $F \succeq G$

Theorem. \succeq on **F** satisfies **A1+M**, **A2**, **A3**^{*} iff there is a continuous, strictly increasing $u: X \to \mathbb{R}$, such that:

$$U(F) = \int u(x) dF(x)$$
 represents \succeq .

- F second order stochastically dominates G if $F \neq G$ and $\int_{-\infty}^{z} G(x) \, \mathrm{d}x \geq \int_{-\infty}^{z} F(x) \, \mathrm{d}x$ for all z
- $\blacksquare \succeq$ is risk averse when $F \succ G$, if F second order dominates G

Theorem (Notions of Risk Aversion). Let \succeq on **F** satisfy **A1+M**, **A2**, **A3**^{*} and u be the vNM utility index. Then:

 $\succeq \text{ risk averse } \Leftrightarrow \text{ u strictly concave } \Leftrightarrow \delta_{\frac{1}{2}x+\frac{1}{2}y} \succ \frac{1}{2}\delta_x + \frac{1}{2}\delta_y.$

Anscombe-Aumann

- Let $S = \{1, ..., n\}$ be a finite set of states, X be a set of prizes
- $\blacksquare \text{ Let } H \text{ be a set of acts } f: S \to \mathcal{L}\left(X\right)$
- We have the following AA axioms:
- **AA1-AA3** These are just **A1–A3** for \succeq on H
- **AA4** $x \succ y$ for some $x, y \in X$ (non degenerate preference)
- **AA5** For every f, g, \hat{f}, \hat{g} , such that there are non-null $i, j \in S$ so that $f_k = g_k$ for all $k \neq i$, $\hat{f}_k = \hat{g}_k$ for all $k \neq j$ and $f_i = \hat{f}_j$, $g_i = \hat{g}_j$, we have $f \succeq g$ implies $\hat{f} \succeq \hat{g}$ (state separability)
- A state $i \in S$ is null if for all f, g such that $f_j \equiv g_j$, for $j \neq i$ we have $f \sim g$
 - Note that **AA5** implies state-separable preferences

Theorem (Anscombe-Aumann 1963). \succeq satisfies **AA1** – **AA5** on H iff there exists a non-constant linear U on $\mathcal{L}(X)$, and a probability μ on S such that:

$$W\left(f\right) := \sum_{s \in S} U\left(f_s\right) \mu\left(s\right)$$

represents \succeq . U is unique up to a positive affine transformation.

■ The key part of the proof is the lemma below

Lemma. Function $W: H \to \mathbb{R}$ is linear iff $\exists \{U_s\}_{s \in S}$, such that $W(f) = \sum_{s \in S} U_s(f_s)$.

- The rest of the proof proceeds as follows:
 - Using AA5 show that all U_s from the lemma represent the same preferences up to positive affine transformation
 - By **AA4** there is one non-null state $i \in S$
 - Let the positive affine transformations taking utility from state j to state i be $a_j > 0, b_j$

- Define $\mu(j) = a_j$ and normalize to sum to 1
- We extended this to arbitrary S, but restricting to H^0 , the set of *simple* acts, i.e., acts which yield finite number of prizes
- In this case we needed a slightly stronger axiom **AA5**:

AA5* $f, g \in H^0$, and $p, q \in \mathcal{L}(X)$, and non-null events E, \hat{E} , such that: $f_s = g_s$ for $s \notin E$, $\hat{f}_s = \hat{g}_s$ for $s \notin \hat{E}$, and $f_s = \hat{f}_{\widehat{s}} = p, g_s = \hat{g}_{\widehat{s}} = q$ for all $s \in E, \ \widehat{s} \in \hat{E}$ we have $f \succeq g$ implies $\hat{f} \succeq \hat{g}$

 $\blacksquare \text{ Event } E \subset S \text{ is null if } f_s = g_s, \forall s \in S \smallsetminus E \text{ implies } f \sim g$

Qualitative Probability

■ We began by looking at some facts from probability theory

Fact 1. A finitely-additive probability μ on A, an algebra on S, can be extended to 2^S .

Fact 2. A σ -additive probability μ on A, an algebra on S, can be extended to $\sigma(A)$.

- A probability μ on an algebra \mathcal{A} is **convex-valued** if $\forall A \in \mathcal{A}$, $r \in [0, 1]$, there is $B \subset A$ such that $\mu(B) = r\mu(A)$
- A probability μ on an algebra \mathcal{A} is **non-atomic** if $\forall \mu(A) > 0$, there is $B \subset A$ such that $0 < \mu(B) < \mu(A)$

Theorem. Convex-valued $\mu \Rightarrow$ non-atomic μ . The converse is true for σ -additive μ .

- $\blacksquare \text{ Preference } \succeq^* \text{ over } \mathcal{A} \text{ is a qualitative probability if:}$
 - **Q1** \succeq^* is complete and transitive

Q2
$$A \succeq^* \emptyset$$
, for all A

Q3
$$S \succ^* \varnothing$$

Q4
$$A \succeq^* B$$
 iff $A \cup C \succeq^* B \cup C$, when $A \cap C = B \cap C = \emptyset$

- Further, there was an important axioms regarding partitions
 - **P** $A \succ^* B$ implies $\exists \{A_1, ..., A_n\}$, a partition of S, such that $A \succ^* (B \cup A_i)$ for every A_i
 - Says that not too many things are different from each other"
- Kreps book shows that a qualitative probability, \succeq^* , satisfies **P** iff it is both fine and tight:
 - \succeq^* is **fine** if for all $A \succ^* \emptyset$, there is a finite partition of S no member of which is as likely as A
 - \succeq^* is tight, if for all $A \succ^* B$, there is C such that $A \succ^* (B \cup C) \succ^* B$
- Below are some examples of the above theorem
 - Let $S = [0,1] \cup [2,3] = S_1 \cup S_2$ and write $A = A_1 \cup A_2$ (where $A_1 \subseteq S_1, A_2 \subseteq S_2$)

Example (Lexicographic). $A \succ^* B$ iff $|A_1| > |B_1|$ or if $|A_1| = |B_1|$ and $|A_2| > |B_2|$

■ Fineness fails: For A = [2, 2.5], we have $A \succ^* \emptyset$, by every finite partition includes an element with a positive mass on S_1

Example (Substitutes). $A \succ^* B$ iff $|A_1| + |A_2| > |B_1| + |B_2|$, or if $|A_1| + |A_2| = |B_1| + |B_2|$ and $|A_1| > |B_1|$

■ Tightness fails: For A = [0, 0.5], B = [2, 2.5], we have $A \succ^* B$, but nothing can be added to B that will not make it strictly more likely than A

Theorem. Let \succeq^* satisfy Q1–Q4 and P. Then $\exists \mu$ a finitelyadditive prob. that represents \succeq^* ; μ is unique and convex valued.

Fact*. Every \succeq^* satisfying **Q1–Q4** and **P** has an 2^n -equipartition (for every n), and for $A \succ^* B$, there is $C \subset A$ such that $C \sim^* B$.

■ The proof of the theorem uses this fact and a few lemmas

Lemma 0. Assume $A \cap B = \emptyset = C \cap D$. If $A \succeq^* C$ and $B \succeq^* D$, then $A \cup B \succeq^* C \cup D$. Further $A \succ^* C$ and $B \succ^* D$ implies $A \cup B \succ^* C \cup D$.

Lemma 1. Let $a = \{A_1, \ldots, A_n\}, b = \{B_1, \ldots, B_m\}$ be two equipartitions of S. Then (i) n = m implies $A_i \sim^* B_j$ for all i, j (ii) n > m implies $A_i \succ^* B_j$ for all i, j (iii) n = 2m implies $A_i \sim^* B_j \cup B_k$.

- Define $k(n, a, A) = \min \{k : \bigcup_{i=1}^{k} A_i \succeq^* A\}$, for some $a = \{A_i\}_{i=1}^{2^n}$
- $\blacksquare \text{ Further define } k(n, A) = \min_{a \in \mathbf{a}^{2^n}} k(n, a, A)$
 - By lemma 1, k(n, A) = k(n, a, A)
- Finally define $\mu(A) = \lim_{n \to \infty} \frac{k(n,A)}{2n}$

Lemma 2. $\mu(A)$ is a finitely-additive probability.

■ The final step is to show μ represents \succeq^* and is unique and convex valued

Savage

- \blacksquare Let S be an artbitrary set of states, X the set of prizes
- An act $f: S \to X$ is simple if it takes a finite number of prizes
- \blacksquare Let \succeq be a relation on F, the set of all simple acts
 - For any $x \in X$, let $x \in F$ be the act always returning prize x
 - Let fAg denote the act which is the same as f on states $A \subset S$ and the same as g on $S \smallsetminus A$
- The Savage axioms are:
 - **S1** \succeq is a preference relation
 - **S2** There is some $x, y \in X, F$ such that $x \succ y$ (non-degeneracy)
 - **S3** $fAh \succeq gAh$ implies $fAh' \succeq gAh'$ (sure-thing principle)
 - **S4** If A is non-null, then $xAh \succeq yAh \forall h$ iff $x \succeq y$ (Kreps sure-thing principle)
 - **S5** $xAy \succeq xBy$ implies $x'Ay' \succeq x'By'$, for all $x \succ y, x' \succ y'$ (states are independent of prizes)
 - **S6** For all $f \succ g, x \in X$ there is a finite partition of S such that $xAf \succ g$, and $f \succ xAg$ (strong continuity)
- Some useful observations
 - For **S6** to be satisfied *S* must be infinite
 - For S5 to be violated we need at least 3 prizes
 - The existence of an additive representation implies S3

- The strict version of **S4** is for all non-null $A: x \succ y$ iff $\exists h.xAh \succ yAh$
- The "for all h" is important for constructing counterexamples of S4
- In the absence of completeness, zero measure sets might not be null, as by definition, A is null if for all f, g, h: $fAh \sim gAh$, but the latter may not be comparable

Theorem (Savage 1954). A binary relation \succeq on the set of simple savage acts satisfies S1-S6 iff there exists a non-constant function u on X, and a finitely-additive probability on $(S, 2^S)$, such that $W(f) = \sum_{x \in X} u(x) \mu(f^{-1}(x))$ represents \succeq . Furthermore, μ is unique and u is unique up to an affine transformation.

- Steps of the proof:
 - Pick any $x \succ y$ and define \succeq^* by $A \succeq^* B$ iff $xAy \succeq^* xBy$.

 - For $f \in F$, define p_f by $p_f(x) = \mu(f^{-1}(x))$, i.e. folddown (simple) acts to (simple) lotteries
 - Show that $\phi: F \to \mathcal{L}^0(X)$, defined by $\phi(f) = p_f$ is onto, i.e. every (simple) lottery $p \in \mathcal{L}^0(X)$ has an act that "reduces" to it
 - $p_f = p_g$ implies $f \sim g$
 - Define \succeq^0 on $\mathcal{L}^0(X)$ by $p \succeq^0 q$ iff there are f, g such that $f_p = p, g_p = q$, and $f \succeq g$
 - \succeq^{0} satisfies (vNM) A1-A3 and therefore there exists a function $u: X \to \mathbb{R}$ that represents \succeq^{0} on $\mathcal{L}^{0}(X)$
 - Combined together, u, μ yield the desired representation: $W(f) = \sum_{x \in X} u(x) \mu(f^{-1}(x))$

Comments about Finiteness Assumptions

- Throughout this course we worked with finite primitive sets, with occasional excursions into the infinite, in particular:
 - vNM: X is a finite set of prizes
 - vNM over monetary prizes: here we considered infinite X, but with the natural order structure, allowing us to approximate elements in $\mathcal{L}(X)$ by simple lotteries, using an added monotonicity requirement
 - A-A: S is finite and in the homework we extended the result to infinite S but restricted to simple acts, i.e. acts that give a finite number of outcomes (lotteries in $\mathcal{L}(X)$ in this case)
 - Savage: S is infinite (required for **P** to hold), but we restrict attention to *simple* savage acts